
Limitations of the State of Health and Health
Indicators for Electric Vehicle batteries

Maite Etxandi-Santolaya
Energy Systems Analytics Group

Catalonia Institute for Energy Research - IREC
Barcelona, Spain
metxandi@irec.cat

Lluc Canals Casals
Dept of Engineering Projects and Construction
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Abstract—Estimating the State of Health of Electric Vehicle
batteries is a crucial yet challenging task. Various Health In-
dicators have been proposed to assess degradation, yet several
of them may not be obtainable under normal operation. Ad-
ditionally, battery degradation alone does not provide insights
into the battery’s functionality for a specific application. To
address these limitations, this study analyses experimental data
reflecting diverse driving conditions and evaluates the efficacy
of various Health Indicators to estimate the State of Health.
Results show that the value of the second peak in the Incremental
Capacity curve and the use of multiple indicators produce the
most accurate results. Furthermore, this study introduces a
functional definition of battery degradation through the State of
Function, which combines the specific driving requirements with
the capacity to estimate how far the battery is from its functional
End of Life. This approach provides a more comprehensive
understanding of the battery’s health and its ability to perform
efficiently for a given application.

Index Terms—Electric Vehicle battery, Health Indicators, State
of Function, State of Health

I. INTRODUCTION

The transition to electric mobility is driven by the need to
decrease greenhouse gas emissions, combat climate change,
and improve air quality [1]. To promote Electric Vehicle
(EV) adoption, governments are implementing policies and
incentives, while car manufacturers are transitioning to electric
models [2]. As a result, the number of EVs on the road is
expected to grow significantly in the near future [3].

Despite significant advances in EV research, further techno-
logical improvements are necessary to enhance their practical-
ity, efficiency, and sustainability. A crucial issue in this regard
is related to the estimation of battery degradation, which is
the gradual loss of usable capacity and power [4]. To improve
battery monitoring and control and prevent compromising the
driving experience, efforts are being invested in predicting the
State of Health (SoH), which measures battery degradation.

Health Indicators (HI) can be extracted from a snapshot of
battery performance, typically from the temperature, current,
and/or voltage curves [5]. Several HIs have been obtained in

the literature that show a strong correlation with the SoH.
These HIs are mostly derived from the Constant Current (CC)
- Constant Voltage (CV) charge period, which provides more
stable conditions than during driving [6]. Potential HIs derived
from this period include the CC charge time [7]–[9], CC
charge capacity or energy [9], [10], CV charge time [7], [9],
CV charge capacity or energy [9], [10], proportion of CC
time over total charge [8], [9] and the slopes at the end of
the CC charge [6]. However, obtaining these HIs requires a
full CC-CV charge, which is not commonly available on EV
charges. Based on partial charges, the coefficient of variation
of the current during CV and the coefficient of variation of
the voltage during CC has been proposed [11]. Another set
of HIs is the time for Equal Voltage Increase (EVI), which
calculates the time that it takes to reach a specific voltage jump
[12]. Similarly, the voltage change during Equal Time Increase
(ETI) [9] can be considered. For EVIs and ETIs to be effective,
the voltage ranges used must be common in the user’s charging
pattern. Additionally, HIs based on the minimum, maximum
or mean temperatures and the area under the curves during
CC and CV charges have been suggested [9]. Nonetheless,
the results may be distorted by the impact of cooling and
variations in ambient temperature.

An important set of HIs during charge are the ones derived
from the Incremental Capacity Analysis (ICA) [13]. Incre-
mental Capacity (IC) curves convert the plateau region of
the Voltage-Capacity curve into identifiable peaks that provide
insight into the degradation mechanisms [14]. Several HIs can
be extracted from these curves, like the peak location, the peak
value or the area under the peaks [8], [9], [15]. However,
these curves are sensitive to the value of the c-rate [16]
and temperature and many of the SoH algorithms proposed
through this approach assume a full charge [17], discarding
the variation of the curves depending on the voltage range.
Similarly to the ICA, the Differential Voltage Analysis (DVA)
can be considered which represents the differential voltage
over the charge throughput [18].



Other HIs can be derived from the discharge period. Sim-
ilarly to the ones obtained during the charge, the time for a
full CC discharge is employed as a HI [19]. Considering that
full discharges are not available onboard, the equal voltage
decrease time [8], [19], [20] or the energy [10] can be
defined during a CC discharge between the desired voltages.
Nevertheless, HIs obtained in this way are not realistic for
EVs, as the current rarely remains constant during driving.

HIs extracted from the rest periods can also be considered.
For example, the voltage recovery of the battery after the
EV stops has been proposed [21]. Another work used the
relaxation voltage after a full charge and 30 minutes of rest
[22].

Finally, other studies employ the Internal Resistance (IR)
as a HI for a capacity-based SoH [7], [15], [19]. However,
since decreased capacity and increased IR can have distinct
implications for performance, it is recommended to estimate
both variables independently.

Selecting the most adequate HIs among the existing ones,
requires a comparative study of their accuracy and useful-
ness for on-board algorithms. In this sense, a recent review
evaluated the practicality and complexity of several HIs for
online SoH predictions, but it was limited to discussing
different approaches and did not include experimental data
[17]. Another study conducted laboratory experiments with
an LFP cell to determine a large number of HIs and their
correlation with SoH using grey relation analysis [6]. However,
the cell was cycled based on a battery storage system profile
rather than an EV, and the testing of only one cell did not
allow for evaluating how different operating conditions might
affect the HI value for the same SoH.

After selecting one or more HIs, linear regression [15] or
more complex machine learning algorithms (e.g. Gaussian
Process Regression [11] or Neural Networks [12]) can be
employed to estimate the SoH of a battery. However, this
approach has a significant limitation: while the SoH provides
valuable information, it lacks interpretability for a specific
application. Because driving patterns and environmental con-
ditions vary, the required functionalities of batteries differ for
each driver [23]. To overcome this limitation, the State of
Function (SoF) can be used. Following a previous work, the
SoF can be defined to consider how far a battery is from
becoming unusable for a particular application and reaching
its end of life [24].

The aim of this study is to evaluate the performance of
various HIs and define the SoF for different cases. Compared
to previous studies that analysed HIs, this work employs
realistic and varied cycling data. Laboratory experiments were
conducted to six cells using profiles derived from real driving
that represent different drivers, enabling the evaluation of the
HIs for different usage patterns and estimate the SoH. As a key
contribution, the specific driving requirements are compared to
the degradation level to define the SoF and provide a useful
indicator of the battery’s functionality for each case.

II. METHODOLOGY

A. Experimental Set-up

The data for this study consists of the laboratory cycling per-
formed to six 5Ah Li-ion cylindrical cells with NMC cathode
from the manufacturer LG Chem, model INR21700M50LT.
The equipment used to cycle the cells is the BaSyTec XCTS
Mk II and the temperature is controlled with the climate
chamber Arbin MZTC.

To simulate realistic driving conditions, synthetic driving
profiles were generated using real data, as presented in a
previous work [23]. The profiles are generated based on road
type (Semi Urban (SU) or Semi Highway (SH)) and the
duration of the driving trip. Data collected for over 1.5 years
from 24 EVs and 3 different European regions is used to
define the driving times that cover 50% and 90% of the
trips. Instead of considering the same duration for each day,
to add variability, the daily driving time is obtained from a
normal distribution where the standard deviation is 5% of
the average. Table I shows the road type, population covered,
average trip duration between charges and battery capacity
considered for each of the six cells. After each driving trip,
the cell is charged with a constant current of C/3. The cycling
was first performed at ambient temperature and then at 35ºC
to accelerate the degradation. Therefore, each of the cells
represent a different driver that uses the EV daily to perform
relatively homogeneous trips and charges the battery everyday.

TABLE I: Description of the cycling for each cell

Cell Road Population covered Av. driving time Capacity

1 SH 50% 44 min 30 kWh
2 SH 50% 44 min 65 kWh
3 SH 90% 109 min 65 kWh
4 SU 50% 52 min 30 kWh
5 SU 50% 52 min 65 kWh
6 SU 90% 126 min 65 kWh

Reference Performance Test (RPT) are performed at 25ºC
to evaluate the degradation and include a full CC-CV charge
at C/3 rate and a full discharge at 1C, repeated twice.

B. Health Indicators

The criteria employed for selecting HIs for this study
considers the following points:

• HIs that assume CC conditions during discharge are not
considered due to their unrealistic nature.

• Temperature related HIs are not considered as they ne-
glect the effect of the cooling system.

• DVAs based HIs are not consider as they contain similar
information as ICA based ones, which are considered.

• HIs that cannot be obtained from the available data are
not considered. This includes the voltage relaxation, as
no rest period was considered after the driving cycles.

• Since the IR is more useful decoupled from the capacity
fade, it is not considered as a HI.



Table II summarizes the HIs obtained from the full charges
of the RPTs, as shown in Fig 1. The equations for the slope
HIs, EV I , ETI are shown below. V max, V min and dt
depend on the range, as specified in Table II.

Slope =
V max− V min

tVmax − tVmin
(1)

EV I = tVmax − tVmin (2)

ETI = VCCend − VCCend−dt (3)

The IC curve is obtained from Equation 4, where dV is
15mV. ICV and ICP are obtained by locating the peaks and
the area is calculated using Equation 5 which considers the
adjacent points to the peak.

IC =
dQ

dV
=

Qt −Qt−1

Vt − Vt−1
(4)

ICA = (VP+1 − VP−1)(
QP+1 +QP−1

2
) (5)

C. State of Health algorithms and error definition

Once the HIs are obtained, the next step is to develop a
SoH algorithm. To accomplish this, the data containing the
HIs for each charge is split into train and test sets, with the
former containing 80% of the data. Random data points for all
available cells are included in the train dataset, which is used
to build the SoH algorithms. Equation 6 shows the regression
used to estimate the SoH.

SoH = a+

n∑
i=1

biHIi (6)

TABLE II: Health Indicators employed

Health Indicator Label

CC Time tCC

CC Capacity AhCC

CC Time Ratio tCC/total

CV Time tCV

CV Capacity AhCV

Slopes at CC charge end

3.4-3.6V SlopeCC1

3.6-3.8V SlopeCC2

3.8-4V SlopeCC3

4-4.2V SlopeCC4

EVI

2.6-3V EV I1
3-3.4V EV I2

3.4-3.8V EV I3
3.8-4.2V EV I4

ETI
Last minute of CC charge ETI1
Last 5 mins of CC charge ETI2
Last 10 mins of CC charge ETI3

ICA

Peak 1 Voltage ICV 1

Peak 1 Value ICP1

Peak 1 Area ICA1

Peak 2 Voltage ICV 2

Peak 2 Value ICP2

Peak 2 Area ICA2

Peak 3 Voltage ICV 3

Peak 3 Value ICP3

Peak 3 Area ICA3

Peak 4 Voltage ICV 4

Peak 4 Value ICP4

Peak 4 Area ICA4

D. State of Function definition

As previously discussed, the SoF can be used to relate the
degradation with the driving requirements. In this study, the
SoF considered is limited to the capacity aspects (SoFe) and
future work will integrate power related considerations. The
SoFe is defined by Equation 7 where EEoL and EBoL denote
the End of Life (EoL) and Beginning of Life (BoL) capacities
in kWh, respectively [25].

SoFe =
(EBoL SoH)− EEoL

EBoL − EEoL
(7)
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Fig. 1: Health Indicators during CC-CV charge



The definition of EEoL is done considering that the battery
reaches the EoL once it is not able to provide 95% of the
driving trips of the user. The EEoL values are 6.48 kWh (Cell
1 and 2), 21.19 kWh (Cell 3), 5.03 kWh (Cell 4 and 5) and
15.56 kWh (Cell 6). It is noteworthy that some cases have the
same EoL requirement since only the nominal battery capacity
is changed, and the driving considered is the same.

III. RESULTS

First the HIs corresponding to the full RPT charges are
presented. The left side of Fig 2 displays the Spearman
correlation values for all the HIs considered. A sub-selection of
HIs with a correlation greater than 0.75 is then obtained, which
are, in order of correlation, ICP2, tCC , AhCC, ICA2, EV I3,
SlopeCC2 and SlopeCC1. The right side of Fig 2 shows the
correlation matrix of the HIs and the SoH. Since AhCC shows
the same values as tCC , it is no longer considered.

Fig 3 represents the CC-CV and IC curves for various
degradation levels, including zoomed-in views of the voltage
ranges (3.4-3.8V) relevant to the selected HIs. Note that
visualizing the degradation trend in the CC-CV curve is not
straightforward. In fact, the IC curve is introduced to help
identify movements more clearly. As the Spearman correlation
confirms, the second peak in the IC curve exhibits a clear
tendency with degradation. As the battery ages, the peak value
(ICP2) and the area under the peak (ICA2) decrease. In terms
of voltage-related HIs, EV I3 shows a decreasing trend with
the SoH, while both slopes (SlopeCC2 and SlopeCC1) appear
to increase as the battery ages. Finally, the time during the CC
period (tCC) decreases with degradation.

The HIs that show the highest correlation are used to build a
regression-based SoH algorithm following Equation 6 (n=1).
The regression for each HI is depicted in Fig 4. The black line
represents the regression results obtained by considering all
datapoints, while the other lines represent regression obtained
by considering the datapoints for each cell. Ideally, if a HI is

Fig. 2: HI selection based on Spearman correlation

independent of the cycling conditions, the trends for each cell
should be similar.

Besides creating regressions for single HIs, combining them
can enhance the performance of the estimation. All possible
combinations of more than two HIs have been tested, and the
combination that minimizes the errors contains ICP2, tCC ,
EV I3, SlopeCC2 and SlopeCC1. This model is referred to
as multiHIs and follows Equation 6 (n=5).

Table III shows the MAE, the MSE and the RMSE for
each model. Results show that the multiHIs model produces
the smallest estimation error. In terms of the most accurate
HI, all error metrics are the lowest when considering ICP2.

Considering the EoL values presented in Section II-D, Fig
5 shows the measured SoH values translated to the SoFe

for each case. Although the SoH trends are comparable for
all cells, the SoFe differs from cell to cell. Cell 3 has the
most restrictive capacity requirements and shows the fastest
decrease in SoFe, implying that it is likely to reach EoL

(a) Voltage during CC-CV charges (b) Incremental Capacity curves

Fig. 3: CC-CV and IC curves for different levels of degradation
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Fig. 4: Regression results for different HIs. The markers represent the data points and the lines the linear regressions.

earlier than the others. In the case of Cell 3, a 2% reduction
in capacity leads to a 4% decline in SoFe. Conversely, Cell
5 has the least restrictive capacity requirements, and its SoFe

only drops by 2% when the capacity decreases by 2%.

TABLE III: Errors for the different models

Model MAE MSE RMSE

tCC 2.64E-03 8.65E-06 2.94E-03
SlopeCC1 3.26E-03 1.38E-05 3.71E-03
SlopeCC2 3.38E-03 1.90E-05 4.36E-03

EV I3 2.95E-03 1.05E-05 3.24E-03
ICP2 2.45E-03 8.27E-06 2.88E-03
ICA2 2.74E-03 9.96E-06 3.16E-03

multiHIs 1.64E-03 3.96E-06 1.99E-03
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Fig. 5: SoH and SoF evolution for each cell. The markers
represent the data points and the lines the linear regressions.

IV. DISCUSSION

Section III has shown how different HIs can estimate the
SoH using ideal full battery charges at constant conditions.
However, in real life, charging periods vary and can affect
the SoH estimation. EV charges are often incomplete, which
affects the value of some HIs (i.e. tCC and HIs obtained
from IC curves) and makes some of them not even obtainable
(slopes, EVI and IC related HIs obtained at specific voltage
ranges). It is important to highlight that the shape of the IC
curves is affected, and incomplete charges change the value
and position of the peaks. In addition, current during charging
may not remain constant due to charge point limitations,
smart charging or Vehicle to Grid, affecting the voltage and
peak measurements. Ambient temperature differences may
also distort results as HIs are often obtained under constant
temperature in laboratory conditions.

To address these issues, further analysis is required to define
more realistic HIs. One possible approach is to redefine the
EVIs or obtain HIs from partial IC curves based on common
voltage ranges. In addition, considering the variability of
working conditions, different algorithms can be built and when
specific conditions are met that allow to accurately obtain one
of the HIs, a particular algorithm can be executed to update the
SoH. However, different HIs may provide more information
than just the capacity fade. For instance, the movement of
IC curves is influenced by the cycling history and reflects
different degradation mechanisms [13]. To better represent
battery health, the values of different HIs can be stored as
a matrix. Additional analysis is required to understand the
relationship between cycling conditions and HI evolution.

Section III has also highlighted the limitations of the current
definition of SoH as an indicator of battery performance and



has introduced the concept of SoFe as a more practical metric
based on each driver’s capacity requirements. However, for a
more comprehensive analysis of battery functionality, other
factors such as power capabilities need to be considered. The
power capabilities of the battery depend on the degradation
level and should be compared to the power requirements of
the specific application. This will enable the prediction of the
functional EoL point, beyond the capacity-based threshold. In
fact, currently it is widely assumed that the EoL of the battery
takes place when the capacity fades 20% regardless of the
application requirements and nominal battery capacity [26].
The approach to define the SoF in this way, provides high
value to increase the accuracy of the EoL and to extend the
lifespan of the battery in the first life.

V. CONCLUSIONS

This work analyses experimental data representing diverse
driving use cases to evaluate the applicability of different HIs
to estimate the degradation and address the limitation of the
SoH definition to represent the battery functionality.

Several HIs are obtained from full charges and their accu-
racy to estimate the SoH is compared. The value of the second
IC peak shows the best correlation with the SoH. In addition,
rather than using a single HI, the best estimation is obtained
from combining several HIs. Nevertheless, further work is
needed to find suitable HIs based on partial voltage ranges,
representative of common usage patterns, and to evaluate the
degradation mechanisms linked to each of them.

Additionally, the SoF has been used to provide a practical
definition of the capacity fade. By analysing the driving
requirements, the SoF is used to reflect how far the battery is
from retirement, which is not observable through the SoH. The
SoF allows to consider practical limitations of each application
rather than assuming a fixed EoL for all cases.
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