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Data-Driven State of Health and Functionality
Estimation for Electric Vehicle Batteries Based on
Partial Charge Health Indicators

Maite Etxandi-Santolaya”, Tomas Montes

Abstract—Effective Electric Vehicle (EV) operation relies on
robust State of Health (SoH) estimation algorithms, key for in-
formed battery management. Various algorithms have been pro-
posed to estimate degradation, often depending on full charge
segmentation or on conditions that deviate from real-world EV
operation. Addressing this gap, this study introduces a cell-level
SoH estimation algorithm based on partial charges. The proposed
approach employs Health Indicators (HIs) derived from realis-
tic laboratory testing, which contains a variety of voltage ranges
during charge to replicate the complexity of real data. The study
compares two commonly employed data-driven algorithms, Sup-
port Vector Regression (SVR) and Neural Networks (NN) and
two estimation voltage ranges, which encompass the second and
third Incremental Capacity (IC) peak. Along with the SoH, the
battery functionality is estimated through the State of Function
(SoF), leveraging degradation data and performance requirements
for each tested cell. This enables the definition of an indicator
quantifying the proximity of the battery to underperformance in
specific applications. In general, the second IC peak shows higher
correlation to the SoH. However, the NN SoH algorithm, when
trained with high number of observations in the third IC peak,
shows the lowest error with an average Root Mean Square Error
(RMSE) of 0.00330. Moreover, the translation from SoH to SoF
highlights the different performance requirements for each case
and supports a functional definition of End of Life (EoL) beyond
the fixed threshold.

Index Terms—Electric vehicle, end of life, health indicator,
machine learning, state of function, state of health.
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NOMENCLATURE
BMS  Battery management system.
BoL Beginning of life.
CC Constant current.
Ccv Constant voltage.
DoD  Depth of discharge.
ECM  Equivalent circuit model.
EoL End of life.
ETI Equal time increase.
EV Electric vehicle.
EVI Equal voltage increase.
FEC Full equivalent cycle.
HI Health indicators.
IC Incremental capacity.
ICA Incremental capacity analysis.
IQR Interquartile range.

IR Internal resistance.

Li-ion Lithium-ion.

ML Machine learning.

MSE  Mean squared error.

NN Neural networks.

RBF  Radial basis kernel.
RMSE Root mean squared error.
RPT Reference performance test.
SoC State of charge.

SoF State of function.

SoH State of health.

SVR  Support vector regression.

1. INTRODUCTION

HE widespread adoption of the Electric Vehicle (EV)
T represents a step in the pursuit of a more sustainable
transportation system. Central to the success of this transition
is the efficiency and longevity of their batteries [1]. Among
the numerous metrics used to assess the performance of EV
batteries, the State of Health (SoH) measures the degradation,
generally in terms of the capacity fade. The SoH provides insight
to manufacturers, service providers, and consumers to make
informed decisions regarding battery operation, maintenance,
repair and replacement.

Various methodologies exist to estimate the SoH for EV
batteries which can be categorized in physics-based, Equivalent
Circuit Model (ECM) based, and data-driven approaches.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Physics-based models rely on fundamental electrochemical
principles to estimate the SoH [2]. ECM-based methods com-
bine the models with filtering techniques, like Kalman Filters,
to track the model states [3]. These methods have important
limitations stemming from high computational costs, especially
in the case of physics-based algorithms, and lower accuracy for
ECM-based methods [4].

Data-driven methods, in contrast, do not require battery mod-
els and utilize vast datasets from battery usage and performance
to estimate the SoH. These methods have shown significant
promise, benefiting from advanced techniques to discern com-
plex patterns and correlations.

Several data-driven algorithms have been proposed for SoH
estimation. Some algorithms utilize stress factor features, ex-
tracted from historical data, that define the degradation trend
(e.g. temperature or Depth of Discharge (DoD)) [5], [6], [7], [8].
Implementing such methods requires higher storage capabilities
and larger and complicated preprocessing due to data recording
issues from lost connections, among others. Another alternative
is to exclusively focus on battery response features for a given
cycle. In this way, the SoH is estimated from the snapshot of
battery response, that contains valuable information about the
degradation.

In this context, one approach involves using the battery’s op-
erating curves for a particular cycle [9], [10], [11]. These curves
include data on voltage, current, and temperature under specific
conditions. However, the performance of the SoH algorithm
can be improved by using more representative features, known
as Health Indicators (HI) in the context of SoH estimation.
These HIs are selected to capture essential information about the
battery’s condition and degradation. Leveraging these features
within data-driven algorithms can lead to higher efficiency and
accuracy.

A critical issue that affects these methods is the source of the
training data. Many algorithms are trained using laboratory data,
which often differs significantly from the dynamic and diverse
conditions encountered by batteries in actual EVs. Laboratory
data frequently assumes unrealistic scenarios, such as static
operation, continuous identical driving cycles or full charges,
which do not represent the complex and varied real-world op-
erating conditions experienced by EV batteries. In line with the
limitations of the laboratory data, several of the HIs proposed in
the literature are based on unrealistic conditions, like constant
discharge currents [12], [13], [14], [15], [16], [17].

Therefore, to be able to estimate the SoH from online data, the
selection of HIs should be done considering their reproducibility
in real-life. In this sense, the charging profiles offer more stable
operating conditions than discharge. Thus, HIs obtained from
charges hold higher interest and have been used to estimate the
SoH [10], [11], [13], [14], [16], [18], [19], [20], [21]. Neverthe-
less, real-life charging profiles still show important variability,
making it hard to find the same operating conditions over time.
Among other differences, the charge does not always cover the
same voltage range, as a consequence of changes in the driving
cycles or a disconnection of the EV before reaching a full charge.
For example, one study presented a SoH algorithm validated
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Fig. 1. IC curves of different partial charges obtained from laboratory exper-
iments under the same conditions (C/3, 25 °C).

for real EVs [22], but assumed that the battery is discharged
as much as the vehicle allows, which is not realistic for most
users.

In contrast, a few studies have proposed partial charge based
HI extraction. However, in many cases the Hls are obtained from
dividing a full charge into segments [9], [23], [24], [25], [26].
This is generally done by selecting part of the CC charge, al-
though one of the referenced studies focused on the CV part [26].
In another study the authors focus on part of a full multi-stage
fast charge [27]. The approach taken by all these studies assumes
that the curves of segmented full charges and partial charges are
the same. Laboratory tests conducted on the same cell under the
same charging current and temperature show that depending on
the initial voltage, the extracted Hls change for the same SoH.
Fig. 1 shows the Incremental Capacity (IC) curves of different
partial charges and how they are affected by the initial voltage.
This highlights an important issue that affects several of the
reviewed SoH algorithms. Segmentation of full charges does not
produce the same curves as partial charges and therefore, several
of the HIs extracted are affected. Although the effect of the initial
voltage has already been shown in the literature [28], several of
the partial charge SoH estimation algorithms still employ charge
segmentation.

To avoid this, others have focused on actual partial charges.
One study proposed the use of the charge time from one State
of Charge (SoC) level to another [29]. Similarly another study
employed the height of the third IC peak and corrected the
value based on the initial SoC of the charge [28]. Another study
analysed real taxi data and selected specific charging sessions
in a SoC range [30]. However, the accuracy of these methods is
directly linked to the accuracy of the SoC algorithm. The voltage
curves can be analysed to avoid errors that arise from using the
SoC. Another study focused on the voltage curves, but always
starting from the same voltage [31].

The literature review is summarized in Table I. It is important
to emphasize that merely having an accurate SoH estimate may
not be sufficient to make informed choices in managing EV
batteries. Beyond understanding the current condition of the
battery, it is equally crucial to predict when a battery might
start exhibiting underperformance and eventually reach its End
of Life (EoL).
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TABLE I
SUMMARY OF THE LITERATURE REVIEW
. Origin of the data Type of feature Source of features
Ist Author Ref Year Historical I Full curves HI extraction Full charge Constant discharge Partial charge
A. Nuhic [5] 2013 X
G.-w. You [6] 2016 X
L. Song 7] 2020 X
Z. He 18] 2021 X
H. Huang [91 2022 X X X
S. Khaleghi [10] 2022 X X X
Q. Gong [11] 2022 X X X
S. S. Sheikh [12] 2020 X X X
Z. Xia [13] 2021 X X X X
W. Liu [14] 2020 X X X X
W. Liu [15] 2020 X X X
X. Li [16] 2023 X X X X
N. Yang [17] 2022 X X X
M. Lin [18] 2023 X X X
L. Cai [19] 2020 X X X
C. Zhang [20] 2022 X X X
M. Lin [21] 2023 X X X
A. Gismero [22] 2023 X X X
R. Xiong [23] 2019 X X X
X. Feng [24] 2019 X X
B. Gou [25] 2021 X X X*
C. Zhang [26] 2023 X X X*
Z. Zhou 271 2022 X X X
B. Jiang [28] 2020 X X X
E. Kheirkhah-rad [29] 2023 X X X
R. Li [30] 2022 X X X
R. Xiong [31] 2023 X X X*

Note that the type of feature and source of curves HIs does not apply to historical data based studies. X* represents partial charges derived from full charge segmentation.

Conventionally, a SoH threshold of 70—-80% has been con-
sidered as the point at which a battery is typically considered
to reach the EoL for automotive purposes [32]. However, this
approach does not account for the diverse driving requirements
and patterns of individual users, which can significantly affect
the practicality of this threshold.

To improve the accuracy of the EoL estimation, a driver-
centric approach should be pursued through the introduction of
the State of Function (SoF) [33]. The SoF measures the battery’s
functionality for a specific driver, considering the unique driving
patterns and requirements of that individual. By understanding
the interplay between battery degradation and performance,
which is the aim of the SoF, a more tailored and effective strategy
for battery EoL estimation can be established.

Considering the limitations of SoH algorithms highlighted,
the first part of this study is focused on analysing laboratory data
containing varied driving habits and charge voltage ranges. The
data is first used to obtain representative Hls from full charges
that give insight into the voltage ranges that contain essential
information about the degradation. Based on this knowledge,
a partial charge cell-level SoH algorithm is proposed based
on two Machine Learning (ML) algorithms (Support Vector
Regression (SVR) and Neural Networks (NN)). Then, in this
study, the SoH is related to the SoF based on the characteristics
of each case. The aspects that should be considered to define the
SoF were presented in a previous study [33]. The current study
puts into practice the estimation of the SoF based on battery
data.

The main contributions of the study are listed below.

e Realistic dataset: analysis of a dynamic dataset obtained
from laboratory testing, which more accurately reflects
real-world driving habits, forming the basis for applicable
SoH estimation methods by bridging the gap between
laboratory and actual EV operation.

e Partial charge SoH estimation: the proposed algorithm
leverages insights gained from full charge HI analysis and
aligns with the dynamic nature of EV battery usage.

e Comparison of two popular ML algorithms (SVR and NN)
in terms of computational cost and accuracy.

¢ Functionality estimation: this study goes a step beyond and
considers the particularities of each case to define the SoF.

II. METHODOLOGY

A graphical representation of the methodology is presented in
Fig. 2. This section starts by introducing the laboratory dataset
in Section II-A, which contains: full charges where the SoH is
measured and cycling that represent the EV driving, composed
by driving cycles followed by partial charges.

The first part of the study is presented in Section II-B where
HIs are extracted from full charges and their correlation with
the SoH is analysed. The main result of this section is the
determination of the voltage ranges most sensitive to degra-
dation. Based on this output, Section II-C presents the SoH
algorithm for partial charges that contain the target voltage
ranges. Finally, in Section II-D, the degradation is combined
with the EoL requirements derived from analysing the driving
cycles to estimate the SoF.

A. Data Description

The data employed for this study contains the laboratory
cycling of 6 cells labeled as ALB1, ALB2, ALB3, ALB4, ALB5
and ALB6. The cell model is the one being employed to build the
battery packs for the EV in the H2020 Albatross project [34]. The
cell is a Lithium-ion (Li-ion) cylindrical cell with NMC cathode
from the manufacturer LG Chem, model INR21700M50LT. A
summary of the cell characteristics is presented in Table II.
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Fig. 3. Example voltage and current profiles of the dataset. (a) During a cycling test and (b) during a RPT.
TABLE II = Y 100 _
CHARACTERISTICS OF THE CELL TESTED IN THE LABORATORY g s
L]
R w £
Manufacturer LG Chem E 4 . ¢ g
Model INR21700-M50T 23 , ¢ 60 =3
Positive Electrode LiNiMnCoO2 E ¢ ’ . _E
Negati?/e electrode graphite and silicon @ E 2 % ¢ % 40 E
Diameter 21.44 mm ; . % : =
Length 70.80 mm S % r ' 2 S
. 3, 2,
~ Weight 69.25 g g = 8
Nominal Capacity (@nom) 4.85 Ah ALB1 ALB2 ALB3 ALB4 ALB5  ALB6
Nominal Voltage 3.63V Cell
Charge cutoft Voltage 42V . . ) . . o
Discharge cutoff Voltage 25V Fig. 4. Boxplots representing the capacity used during all historical driving
cycles for each cell.
Cutoff current 50 mA

The testing protocol consists of cycling and Reference Perfor-
mance Test (RPT)s. The cycling tests were performed at 35 °C,
which corresponds to the maximum acceptable temperature
permitted by the cooling system in the Albatross project. Thus,
the temperature of 35 °C can be considered as part of normal
operating conditions. The cycling test starts with a partial charge
of the battery at C/3 until 4.05V and then a synthetic driving
cycle, as shown in Fig. 3(a). Notice that negative currents repre-
sent discharge currents. The cycle is obtained from a synthetic
driving cycle model [35].

Each of the cells tested aims to represent a driver that uses the
EV daily to perform relatively homogeneous trips and charges
the battery every day. Each synthetic cycle varies in duration,

peak currents, resting times, etc. This aims to introduce variabil-
ity common to real-world driving conditions, which are typically
overlooked in standard cycling protocols. For the purpose of the
study, it is important to highlight that the charge after each of
the driving cycles covers different voltage range, since the DoD
of each cycle is different.

Fig. 4 shows the boxplot of historical driving trips for each
of the cells and Table III presents the main characteristics of the
generated cycles for each cell, where Cd and Cr represent the
C-rate during discharge and regenerative braking, respectively.
Notice how cells ALB1 and ALB3 experience, on average, the
deepest cycles. ALB1 and ALB4 record the highest average and
peaks of discharge currents. These aspects will affect the driving
requirements to be considered for the SoF estimation.
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Fig. 5. Graphical representation of the full charge HIs for (a) the CC-CV curve and (b) the IC curve.
TABLE III TABLE IV

SUMMARY OF DRIVING CYCLE CHARACTERISTICS FOR EACH CELL

Cell Av. Cd Max. Cd Av. Cr Max. Cr
ALBI1 0.73 4.23 0.27 2.63
ALB2 0.33 1.90 0.12 1.18
ALB3 0.34 1.90 0.12 1.18
ALB4 0.50 3.80 0.28 1.74
ALBS5 0.22 1.71 0.12 0.78
ALB6 0.21 1.71 0.12 0.78

After approximately 50 Full Equivalent Cycle (FEC) aRPT is
performed to measure the battery capacity and the Internal Re-
sistance (IR) at different SoC values. The capacity test consists
of two sets of a full Constant Current (CC) - Constant Voltage
(CV) charge at C/3 and a full discharge at 1C. An example of
a RPT is shown in Fig. 3(b). The SoH is obtained considering
the average between both discharges, as shown in (1). The IR is
measured after 1s and every 10% SoC using 1C current pulses.
The battery is fully charged after the RPT.

Quais1 + Qais2
2. Qnom

where Qg;51 and Qg;s; are the discharged capacity obtained
applying Coulomb Counting to each of the full discharges.

SoH = (D

B. Health Indicators for Full Charges

A large variety of Hls have been proposed in the literature
to estimate the SoH. In this study, the criteria employed for
selecting the adequate ones considers the following points:

® Model-based HIs are not considered to adapt a fully data-

driven approach.

e HIs that assume CC conditions during discharge are not

considered due to their unrealistic nature.

¢ Differential Voltage Analysis based Hls are not consider as

they contain similar information as Incremental Capacity
Analysis (ICA) based ones, which are included.

e HIs defined based on the SoC are not considered to avoid

the errors of the SoC estimation.

e HIs that cannot be obtained from the available data are

not considered. This includes the voltage relaxation, as
no rest period was considered after the driving cycles.

HEALTH INDICATORS EMPLOYED

Health Indicator Label
CC Time too
CC Capacity Ahcco
CC Time Ratio tcc/total
CV Time tov
CV Capacity Ahcy
3436V SlopeCCy
Slopes at CC charge end 3638 V SlopeCCy
384V SlopeCC3
4-42V SlopeCCly
263V EVI
Equal Voltage Increase (EVI) 334V EVI,
34-38V EVIs
3842V EVIy
Last minute of CC charge ETI
Equal Time Increase (ETI) Last 5 mins of CC charge ETI>
Last 10 mins of CC charge ETIs
Peak 1 Voltage ICyy
Peak 1 Value 1Cpy
Peak 1 Area I1C A1
Peak 2 Voltage ICyo
Peak 2 Value ICpo
ICA Peak 2 Area 1C a9
Peak 3 Voltage ICy3
Peak 3 Value 1Cp3
Peak 3 Area IC 43
Peak 4 Voltage ICy4
Peak 4 Value ICpy
Peak 4 Area I1C a4

Temperature related HIs are also not considered due to
the use of the climate chamber.

¢ Since the IR affects the power capabilities, it is not consid-

ered as a HI considering that the SoH reflects the capacity
or range capabilities instead.

Based on this criteria, Table IV summarizes the HIs obtained
from the full charges of the RPTs and Fig. 5 represents their
calculation based on the charge curves. The equations for the
slope HIs, EV I, ETI are shown below. Vmax, Vmin and dt
depend on the range, as specified in Table I'V.

Slope — Vmax — Vmin @)

thaw - thin
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EVI = thax - thin (3)
ETI = Vicend — Vocend—at )

The IC curve is obtained from (5), with AV set to 15 mV.
After testing different values, 15 mV effectively balanced noise
reduction and the retention of key information. /Cy, and IC'p
are obtained by locating the peaks and the area is calculated
using (6) which considers the adjacent points to the peak.

_dQ | Qra— Qkp
I0=4v =3y ©)
ICA = (Vo1 — Vi) <Q”1;Q“) ©)

To obtain the most representative HIs, the correlation between
HIs and SoH is analysed. Unlike the Pearson correlation, which
measures linear relationships, the Spearman correlation handles
non-linear and monotonic relationships without such assump-
tions. Considering that the relationship between HI and SoH
may not be strictly linear, in this study the Spearman correlation
is employed.

C. Proposed State of Health Algorithm

From the analysis described in the previous section, the Hls
that show the highest correlation to the SoH can be derived and
the most relevant voltage ranges can be defined. The voltage
range selection needs to balance important aspects such as
reproducibility in real-life and sensitivity to degradation. Based
on this, two models are built:

e P2: built with the voltage range that is most sensitive to
degradation (V; p»). As will be shown, it corresponds to
the second IC peak (3.6-3.9V).

® P3:tobeable to estimate the SoH for cases where the partial
charge voltage (V) does not fall into V;, p», a second model
is built considering a different voltage range (V;, p3). This
last range shows less correlation to the SoH in full charges
but contains a higher number of observations (3.9-4.05V).

As will be shown, the IC peak captured in the P2 model is the
most sensitive to degradation. However, for users with a lower
DoD, that do not reach the required voltage for the P2 model,
the P3 model, which contains part of the third IC peak, can be
used to obtain an estimation of the SoH. For cases where the
charge voltage ranges contains both V; p, and V; p3, the model
with the highest accuracy will be prioritized.

The same methodology is applied to train both models, with
the only difference being the voltage range considered for the
features. The first step to build the SoH algorithm is to filter the
charging sessions that encompass that target voltage range.

1) Partial Charge Dataset: Once the charging sessions that
meet the criteria are filtered, the next step is to extract the new set
of HIs obtainable during partial charges. The HIs selected are
similar to those of the full charges but adapted to the partial
voltage range. Different ranges were tested for the EVI and
the best results were obtained with 3 divisions. 3 EVI features
are obtained for the P2 model with 0.1V increments (E'V I1p,,
EV I2p,, EV I3 p,) and another 3 for the P3 model with 0.05V
increments (EV I1p3, EVI2p3 and EVI3p3).

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 4, APRIL 2025

TABLE V
FEATURE CALCULATION FOR EACH MODEL

Model Feature Calculation
EVIlpg Eq. 3 for 3.6-3.7 V
EVI2pg Eq. 3 for 3.7-3.8 V
EVI3ps Eq. 3 for 3.8-3.9 V
P2 I1Cpo Max. of Eq. 5 in range 3.6-3.9 V
IC 5o Eq. 6 for P = ICpsy
minV Initial voltage of the charge
EVIlps Eq. 3 for 3.9-3.95 V
EVI2p3 Eq. 3 for 3.95-40 V
P3 EVI3ps Eq. 3 for 4.0-4.05 V
ICps Max. of Eq. 5 in range 3.9-4.05 V
ICA3 Eq6 fOI‘P=ICP3
minV Initial voltage of the charge

bartial charee Voltage
Partial charge fiohs
\
V J T Vire Yes
minV
ﬁ 1
" e ©RPT
i S?H ‘ij““@
v v v FEC

minV EVIlp: EVI2p: EVI3pr: ICP2 ICA2 | SoH
Chargel

Charge2

Partial charge
dataset (P2)

Fig. 6. Construction of the partial charge datasets. A partial charge corre-
sponding to the P2 model is shown as an example.

Similarly, the peak value (IC'p; and IC'p3) and area below
the peak (/C 45 and IC 43) are obtained for the partial IC curves
in both P2 and P3 target voltage ranges. The peak voltage is not
considered as it showed lower correlation in the full HI analysis.
Therefore, a set of 5 HIs are employed for each model.

As mentioned in the introduction, considering that the initial
voltage of the charge can affect the extracted HIs (see Fig. 1),
this voltage is included into the model inputs (minV’). In this
way, it is possible to avoid the errors derived from charge curve
segmentation. The summary of features for the models and their
calculation are summarized in Table V.

Since the capacity was only measured through RPTs, the
SoH for each charge is approximated by averaging the SoH
obtained in the previous and posterior RPTs, considering that
the degradation is proportional to the FEC number. Even if the
SoH is not a linear function of the FEC, this interpolation can
be made since the FEC difference is not large.

A graphical representation of the process of building the
partial charge dataset is provided in Fig. 6. 80% of the data
is used for training and 20% for testing the model.

2) Algorithm Selection: Once the processed datasets are ob-
tained, the next step is selecting the algorithm. In this study, two
popular ML algorithms are selected and compared.

The first one is the SVR, which is a regression algorithm based
on Support Vector Machines that aims to find a hyperplane that
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best fits the training data while allowing for controlled devia-
tions, known as the epsilon-insensitive tube. The tube represents
a range around the predicted values within which no penalties
are incurred.

The primal form of the objective function is given by (7). The
function minimizes two terms: the square of the norm of the
weight vector w, which encourages a small-margin hyperplane,
and a penalty term for deviations within the epsilon-tube where
¢; and ¢ are slack variables representing errors. The regular-
ization parameter C' balances the trade-off between achieving a
small training error and a simple model. The constraints ensure
that the errors are within a specified margin (defined by ¢) and
non-negative. ¢(x;) represents the transformation of the feature
vector x; into a high dimensional space, allowing for the capture
of nonlinear relationships.

minimize ;wIIZ+C;(Q+G>
subjectto y; — wl p(z;) —b < e+ G
w(a;) +b—yi <e+¢
GG =20 (M

The optimization problem presented in (7) can be transformed
into a dual optimization problem employing Lagrange multi-
pliers. The detailed explanation of the dual formulation can
be found in the literature [36]. The key advantage of the dual
formulation is that it does not require that the transformed feature
vector ¢(x;) is obtained and instead, only the inner products
of the feature vectors needs to be computed. For this step,
the kernel trick is employed which enables capturing nonlinear
relationships in the data, without increasing the computational
cost associated with feature transformation. In this study, the
employed kernel is the Radial Basis Kernel (RBF), also known as
the Gaussian kernel. The RBF measures the similarity between
two input vectors in a high-dimensional space and is character-
ized by a parameter . The RBF kernel is given by (8) for input
vectors x; and ;.

K (zi,75) = ¢ () - d(x;) = exp (—7llzi — 25]*)  ®)

Given a set of support vectors (z;, y; ), the predicted output for
a new input x is given by (9).
J(@) = wTo(@) + b= (a; - al)p(@) d(x) + b (©)
i=1
where «; and « are the Lagrange multipliers corresponding to
the Support Vectors.

The second employed ML model is the NN. A NN consists
of interconnected layers of neurons, including an input layer,
one or more hidden layers, and an output layer. Each neuron in a
layer is connected to every neuron in the following layer through
weighted connections. These weights determine the influence of
the signal passed between neurons, enabling the propagation of
information through the network.

The output of a neuron z](l) inlayer/is determined by applying
an activation function g to the weighted sum of its inputs plus a
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bias term, as shown in (10). Here, w(lfl) represents the weight

j

connecting neuron ¢ in layer [ — 1 to neuron j in layer [, and b;l)
is the bias term for neuron j in layer [. The activation functions
commonly used in NNs include the sigmoid, tanh, and ReLU

functions.

o (Su ) o
7

The training of a NN involves finding the optimal set of
weights that minimize the error between the predicted outputs
y and the actual outputs y. This is achieved by defining a loss
function L(y, 3), such as the Mean Squared Error (MSE), as
shown in (11), where n is the number of samples.

L(y,9) = (i — )° (11)

n

=1

To minimize the loss function, optimization algorithms like
the Adam optimizer are employed. The gradients of the loss
function with respect to the weights are computed using back-
propagation. The weight update rule during training is given by
(12), where 7 is the learning rate, 6‘2}% represents the gradient

ij
of the loss function with respect to the weight w;;, and w;; is
the weight to be updated.

oL
ow?

)

ol - ufl =

12)

The training process involves iteratively updating the weights
across all layers to reduce the error.

Hyperparameter tuning is an important aspect of both SVR
and the NN. In the case of SVR, hyperparameters include the
choice of kernel (and value of + in the case of RBF), the
regularization parameter C' and the e-insensitive tube width. For
the NN, hyperparameters include the architecture of the neural
network (number of layers and neurons) and the batch size dur-
ing training. For both models, grid search with cross-validation
is employed to tune the hyperparameters. The cross-validation
procedure involves splitting the training dataset into five folds,
systematically training the model on four folds while validating
on the remaining one. The objective is to minimize the MSE dur-
ing this process. The grid search explores various combinations
of the hyperparameters. For SVR the hyperparameters tested are
C (0.1, 0.5, 1, 10), € (0.01, 0.1, 0.2, 0.5), and v (0.001, 0.01,
0.1, 1, 10). For the NN, different numbers of hidden layers (1, 2,
3), neurons per layer (10, 50, 100) and batch sizes (16, 32, 64)
are included, while the learning rate and epoch number are set
to 0.001 and 50, respectively. The resulting best combination of
hyperparameters is determined based on the configuration that
yields the lowest MSE across the cross-validated folds.

The models are trained using Python’s TensorFlow 2.14 and
scikit-learn 1.2.2 f with a computer with the following specifi-
cations: Intel Core i5, 4 cores, 16GB RAM.

D. State of Function Algorithm

The SoF is used in this study to quantify the functionality
of the battery at a given state for a specific application. Thus,
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the SoF indicates how far the battery is from underperforming
and reaching the EoL, where the SoF drops to 0%. Unlike the
common approach, in this study, the EoL is derived for each
application based on analysing the performance requirements
and used to calculate the SoF.

Two main events may force the EoL: capacity fade which is
related to the SoH, and the power fade which is related to the IR
increase. Therefore, these two aspects are included in the SoF.
As shown by (13), the most restrictive of both terms will define
the functionality of the battery.

SoF = min (SoF,, SoFR) (13)

1) Capacity Requirements (SoF.): The SoF,. measures how
far the current capacity (C') is from the EoL capacity threshold
(CEgor). To define Cp,y, the historical range requirements of
the driver are analysed. The approach considered in this study
is to discard the historical trips that do not represent the normal
behaviour of the driver (outliers). These extreme trips are as-
sumed to be covered with alternative transportation methods
or by considering intermediate fast-charging. To obtain the
Cpor, all the historical trip consumptions are analysed and a 1.5
multiplication factor is applied to the Interquartile Range (IQR),
which represents the upper whisker in the boxplot (Fig. 4).
Thus, any value above this C'g,, is considered to be an outlier.
Equation (14) shows the calculation of the SoF,. where Cp,1,
is capacity at Beginning of Life (BoL). C'p,, is obtained from
the first capacity measurement.

C— CEOL

SoF, =
CBor — CEoL

(14)

2) Power Requirements (SoFrg): For a given driving cycle,
the IR plays an important role in the ability to perform the
driving trip appropriately. Following Ohm’s law, the voltage in
the battery after a discharge current drops proportionally to the
value of the IR. Thus, if the IR surpasses a critical threshold,
the voltage would drop below the minimum acceptable level.
One of the tasks of the Battery Management System (BMS) is
to limit the discharge power to avoid this situation.

Therefore, to define the SoFTp it is necessary to understand
power constraints that emerge during driving. These constraints
are notably dependent on individual driving habits, with abrupt
accelerations leading to spikes in current and higher DoDs
resulting in lower voltages. Consequently, a detailed analysis
of the driving profiles is crucial.

To define the SoF R, the chosen approach involves estimat-
ing, for each timestep ¢ of each historical driving cycle, the IR
(IR;) and its maximum permissible value (I R; 1,.x). The cal-
culation of I R; involves (15). Similarly, I R; iy is determined
by (16) where, instead of U; the minimum acceptable voltage of
the battery (Uynin) is considered. Therefore, I R; .« represents
the maximum value of the IR before the undervoltage appears.
The time between measurements ¢ and 7 + 1 is set to Is.

Ui — Uiy
IRy = 2 it 15
R I —I; (1)
Unin — Ui—1
TR, oy = 220in — Zicl 16
' I — ;i (16)
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For each driving cycle, the most critical point is identified, where
IR; is closest to (I R; max). This point is then utilized to define
the SoFTR, cycte, for that particular cycle n, as indicated by
(17). IR,y represents the IR at the BoL (measured during the
first cycling) and IR,, and IR, the values of the IR and
maximum IR for the critical point. S0F7R cycie,, 1s not allowed
to exceed 1.

It is essential to note that the SoF 7R cycie, Mmay vary in sub-
sequent cycles where the power requirements are different. To
account for this variability, all driving cycles between RPTs are
considered, and the SoF  for this entire period is determined by
selecting the lowest recorded value ( (18) where IV represents the
number of driving cycles between RPTs). This allows to define
the SoF r not from a single cycle but considering the historical
power requirements of the driver. In a real BMS instead of the
driving cycles between RPTs a selection based on a time span
can be made (e.g. one month).

. IRmaxn - IR"
SOF[R,cyclen = m <1’ IRmaXn — IRBOL> (17)
N
SoFp = m_nll {SoF R cycic, } (18)

III. RESULTS

The evolution of the SoH over FEC and over time is repre-
sented in Figs. 7(a) and (b) respectively. Since the cells have
previously undergone calendar ageing and some unrecorded
cycling, the initial SoH is not 1 and between 0.93 and 0.94 for
all cells. Depending on the cell, the rate of degradation changes:
ALBS5 undergoes the fastest degradation over FEC and ALB3 the
slowest one. A similar tendency can be found when looking at
the evolution of SoH over time, even though the trends are more
similar. Understanding the causes of the degradation tendencies
is beyond the scope of this work and a different study will explore
the impact of the different stress factors, such as current peaks
and driving DoD, in detail.

Along with the capacity, during the RPTs, the IR was derived.
As an example, Fig. 7(c) shows the evolution of the IR at 100%
SoC over FEC. Although some variability is observed, the IR
shows an increasing trend over FEC, as expected.

A. Full Charge Health Indicator Analysis

First, the HIs corresponding to the full charges are pre-
sented. A sub-selection of HIs with a Spearman correlation
greater than 0.8 is then obtained, which are, in order of correla-
tion, Ahcv, ICp3, ICp,, SlopeCCy, Ahco, toc, SlopeCCy,
EV I, EVIs, and IC 4. Since Ahcc is directly proportional
to tcc, itis no longer considered. Table VI shows the Spearman
correlation values between the HIs and the SoH.

Fig. 8 represents the CC-CV and IC curves for various
degradation levels, including zoomed-in views of the voltage
ranges where the second and third IC peaks take place. Note
that visualizing the degradation trend in the CC-CV curve is
not straightforward. In fact, the IC curve is introduced to help
identify movements more clearly. As the Spearman correlation
confirms, the second and third peak value in the IC curve exhibits
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Fig. 8. Evolution of the charge curves over time. (a) Voltage over time, (b) IC curve with zoom-in views.

TABLE VI
SPEARMAN CORRELATION FOR FULL CHARGE BASED HIS SELECTED

HI Spearman Correlation

Ahcvy 0.992
I1Cps3 0.965
I1Cpo 0.952
SlopeCCy -0.928
tcc 0.926
SlopeCCy -0.898
EVI4 0.884
EVI3 0.883
1C 42 0.858

a clear tendency with degradation. In particular, the second IC
peak moves down and slightly to the right, while the area below
the peak decreases. The third peak also shifts to lower values
but the horizontal movement is not so clear and neither is the
change in the area below the peak. The slopes SlopeC'C; and
SlopeC'Cy tend to increase with lower SoH values, which aligns
with the increase of £V I3 and E'V 4. Intuitively, t o and Ahoy
decrease with degradation.

These results are leveraged to find the voltage range that
is considered for the partial charge SoH estimation. Selecting
an adequate voltage range involves a delicate balance between
sensitivity to degradation and adherence to practical constraints
set by battery manufacturers and common charging conditions.

Considering the results of this section and the associated
voltage ranges for each HI, a compelling choice may lie in
a mid-charge voltage window. The second IC peak occurs in
the voltage range 3.7-3.9V, which is sensitive to degradation as
supported by the high correlation of ICp;y, IC 42, SlopeCCh,
EVI3 and EVI4. Another sensitive voltage range would be
the one corresponding to the third IC peak. However, this range
is close to the maximum voltage of the battery which may be
restricted by the manufacturer to avoid overvoltage. Therefore,
the voltage range selected for the P2 model corresponds to
the second IC peak and extended to include more observations
(Vi,p2 = 3.6-3.9V). In this range, degradation effects are likely
to manifest and represent a mid-SoC charge of the battery which
aligns with normal EV charging patterns.

As mentioned in the methodology, a user with low DoDs
during driving may not reach the minimum voltage of 3.6V often
and for those cases a higher voltage range is selected (V; p3 =
3.9-4.05V) to train a second model.

B. State of Health Estimation Based on Partial Charges

Based on the derived target voltages, the partial charge
datasets are obtained, as explained in Section II-C and the tuned
SVR and NN models are built. Table VII provides an overview
of the distribution of charges among both models, revealing
the number of charges attributed to each. Notably, cells ALB2,
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TABLE VII
NUMBER OF CHARGES IN THE P2 AND P3 MODELS

Cell Total charges P2 P3 P2+P3
ALB1 1724 638%  98.0%  63.7%
ALB2 3213 0.5% 66.1% 0.5%
ALB3 1421 56.7%  96.1%  54.1%
ALB4 2455 13.4%  81.2% 7.5%
ALBS 3084 0.0% 59.9% 0.0%
ALBG6 1294 6.0% 61.6% 0.3%
Total 13191 177% 744% 15.7%

ALBS5 and ALBG6 exhibit minimal representation within the P2
model’s voltage range, and therefore rely on the P3 model for
estimating the SoH. This observation underscores the distinctive
charging characteristics of these cells caused by low DoDs.
Notice how almost all charges that fall into the P2 voltage range
also fall into the P3 one, and only in a limited number of cases
the voltage stopped before 4.05V.

Table VIII shows the hyperparameters of the tuned models,
their associated Root Mean Squared Error (RMSE) and other
error metrics on the test datasets after the grid search with cross-
validation, along with inference and training time. Note that
inference time refers to the time to obtain an estimation of the
SoH based on a given set of HIs. The extraction of HIs given
a charging curve takes approximately 0.09 s. The SVR has the
lowest training and inference time. For the NN built, they are
higher but do not pose a constraint for the application.

For the SVR algorithm, the P2 model exhibits slightly re-
duced errors and higher value of R? compared to the P3 model,
although the difference is not remarkable. The tuned hyperpa-
rameters show that the C' value is larger for the P2 model and
thus, a higher penalty is imposed on deviations from the actual
data points during training, resulting in more complex decision
boundaries. On the other hand, the smaller C' for the P3 model
may indicate a relatively higher tolerance for errors in fitting,
allowing it to generalize better to a larger set of observations.

On the other hand, for the NN, results show that P3 has lower
errors than P2. Even if some observations in P3 do notencompass
the second IC peak, which is more sensitive to degradation, the
high number of observations makes the NN accuracy increase.
In fact, the P3 NN model is the most accurate one out of the four

0.88 0.89 0.90 0.91 0.92 0.93 0.94
Ground Truth

(b) (©

0.88 0.89 0.90 0.91 0.92 0.93 0.94
Ground Truth

SoH predictions over ground truth for (a) P2, (b) P3 and (c) full model. The closer the points are to the 45° red line, the more accurate the predictions.

models built. This shows that if a high number of datapoints
is available, the NN can provide accurate estimations even for
higher voltage ranges.

Fig. 9 shows all the estimated values of the SoH compared
to the ground truth for the P2, P3 and full models. Notice that
the term full is employed to describe the result of combining
both estimations, but prioritizing the the most accurate when
common partial charges are observed (P2 for SVR and P3 for
NN). This model produces the highest number of estimations.

Fig. 10 shows the RMSE for each cell and all models built.
The P2 SVR model shows RMSE values below 0.005 for all cells
except for ALB2, which presents the highest error (0.00761).
This is likely due to the limited observations in the test dataset,
which can result in higher variability in the evaluation metrics.
The lowest error in the P2 SVR model is obtained for ALB3
with a RMSE of 0.00403. For the P2 NN model, the errors are
higher for all cells (reaching up to 0.0093 for ALB6), except for
ALB2 which is the only case in P2 where the NN outperforms
the SVR.

The P3 SVR model errors tend to be slightly higher, up to
0.00575 for ALB1, compared to the P2 SVR model. Neverthe-
less, the lowest error for the SVR models is found for ALB3
with an RMSE of 0.00396. As discussed, the P3 NN model is
the most accurate one (reaching a minimum error of 0.0027 for
ALB?2) except for one of the cells (ALB1) where the P2 SVR
model shows lowest error.

Considering the full model, the average RMSE for all cells
is 0.00468 and 0.00434 for SVR and NN respectively. For cells
with high observations in P2, the errors tend to increase in the
full model, considering the NN case due to its limited accuracy
(e.g. ALBI1). The opposite is observed when considering the
SVR model.

For the final part of the study, the most accurate model is
selected (P3 NN). To enhance the stability and reliability of
the SoH predictions, an averaging approach is employed over
a specified window of 10 FECs. This entails computing the
average SoH prediction for all estimations made within this
window. Consequently, SoH estimations performed for charging
events with fewer than 10 FECs between them are averaged.
Fig. 11 illustrates the averaged approach, where the SoH mea-
sured during the RPTs is juxtaposed with the averaged SoH
predictions over the FEC window. Through this approach, it
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TABLE VIII
TUNED HYPERPARAMETERS FOR THE MODEL AND ERRORS
Model Hyperparameters RMSE MAE MSE R? Inference Time  Training Time
P2 SVR C =10,e=0.01, vy =0.01 0.00463 0.00385 2.15E-5 0.854 0.02 ms 03s
NN Layers = 2, Neurons = 64, Batch = 16 0.00668 0.00528 4.46E-5 0.697 0.6 ms 35s
P3 SVR C =0.5,e=0.01~v=001 0.00472 0.00385 2.22E-5 0.836 0.05 ms 1.6 s
NN Layers = 2, Neurons = 64, Batch = 16 0.00356 0.00249 1.27E-5  0.906 0.3 ms 141 s
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Fig. 10. RMSE for each cell considering models (a) P2, (b) P3 and (c) full. Note that ALB5 does not have any predictions for P2.
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Fig. 11.  Averaged SoH predictions in a range of 10 FEC over FEC compared with the RPT measurements for (a) ALB1, (b) ALB2, (c¢) ALB3, (d) ALB4,
(e) ALB5 and (f) ALB6.

is possible to mitigate the potential impact of variability in  discarded. However, for the employed data this is not a concern
individual predictions and provide a smoothed representation as no resting time between cycles was considered. With this
of the cell’s health status over consecutive charges. Notice that, averaged approach, the model RMSE is found to be 0.00330.
additionally, a restriction on the time between estimations can The RMSE for each cell is presented in Fig. 12 which ranges
be added to make sure that the calendar ageing effects are not  from 0.00230 (ALB6) to 0.00440 (ALB1).
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TABLE IX
EOL CAPACITY THRESHOLD FOR EACH CELL BASED ON HISTORICAL
REQUIREMENTS
Cell EoL Ah  EoL SoH
ALB1 2.589 51.8%
ALB2 1.288 25.8%
ALB3 2.968 59.4%
ALB4 2.043 40.9%
ALBS5 0.928 18.6%
ALB6 2.131 42.6%

C. State of Function

After the estimation of the SoH, the individual driving require-
ments are considered to estimate the SoF. The first part of this
estimation is related to the capacity requirements. Considering
the capacity required to meet each of the historical cycles of
a driver it is possible to define a threshold on the capacity. By
discarding the outliers (see Fig. 4), the EoL threshold for the
capacity is defined in the upper whisker, as shown in Table IX.
Considering these values, the cells with most demanding capac-
ity requirements are ALB1 and ALB3. Considering these values,
the evolution of SoF is presented in Fig. 13(a).

The second part of the SoF is related to the IR. The SoFR is
presented in Fig. 13(b). Notice how the SoFgr shows slightly
similar trends as the IR measured in the RPTs (Fig. 7(c)). For
example, at the last cycles of ALB2 an increase in IR was
observed, which causes the SoF| g to decrease.

When combining both SoF . and SoF g, the general function-
ality (SoF) of the battery is obtained, as presented in Fig. 13(c).
It can be observed that for some cells, the most restrictive
constraint is the capacity one. For example, for both ALB3 and
ALBS5 the SoI" follows the same trend as SoF,. This shows
that under the health and operational conditions tested, power
capabilities do not restrict the performance of those cells. In
other cases, both capacity and power constraints are observed,
meaning that the SoF' at points corresponds to SoF, and at
others to SoFrg. For example, in ALB2 power constraints are
observed in the beginning which translate into capacity ones
eventually. Finally, due to the IR increase at the end of the
cycling of ALB2, the last estimation of SoF' shows that the
power is more restrictive at that point.

At this point, it is important to highlight how the individual-
ities of each cell, both in driving requirements and degradation
trends (capacity and IR) affect the SoF. This emphasizes the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 4, APRIL 2025

importance of understanding battery functionality along with
the degradation, which is overlooked in the current literature
and can be done through the SoF’ proposed in this study.

IV. DISCUSSION

The proposed SoH algorithm adopts a more practical ap-
proach by avoiding the need for full charges, relying instead on
partial charges, which align with real-world scenarios. Notably,
compared to the existing studies, the presented methodology
avoids compounding errors from the SoC estimation and, most
importantly, it avoids the inaccuracies derived from charge seg-
mentation proposed in many of the existing studies. The results
obtained from the SoH algorithm demonstrate errors within the
range reported in the reviewed literature studies (Table I), which
range from 0.00027 to 0.04 (RMSE), compared to 0.00330 from
the averaged NN model in this study.

The boundaries of the SoH estimation are defined by the avail-
able laboratory testing conditions. On account of the available
data, the SoH range that the algorithm can predict is 0.94-0.89.
This range will be extended in the future when more data is
available, in order to evaluate the model accuracy for lower
SoH values. Regarding the operating conditions, a temperature
of 35 °C and a charging current of 1.5 A is required for the
estimation. This implies that the SoH estimation is performed
when the charge occurs at high temperatures (e.g. right after a
driving trip when the battery has self-heated up) and employing
slow charging, which seems to dominate the charging trends
according to the IEA report [37].

To estimate the SoH based on other temperatures and charging
currents, three methodological frameworks can be considered.
The first option (Option A), is to build a reduced number
of algorithms at specific conditions. The same C-rate can be
employed, assuming that the user charges the battery at similar
powers considering the nominal powers for private level 2 AC
charging (3.7, 7.4, 11 and 22 kW). Different temperatures can
be considered to reflect the seasonal changes over the year.
With this Option A, the SoH is only estimated once the average
temperature during the charge and the C-rate corresponds to one
of the trained models.

A more advanced alternative (Option B) requires the use of
Transfer Learning to, starting with the baseline model, estimate
the SoH once new data at different operation conditions is
available.

The final option (Option C) includes the average temperature
and C-rate as features of the model. In this case, the SoH would
be estimated every time that a charge is recorded, as long as it
covers the target voltage range. Therefore, this option allows for
a more frequent SoH estimation, but requires a large number of
observations.

As described in the testing protocol (Section II-A), the same
C-rate and temperature are considered for all the charges. This
made it impractical to employ Option C for the dataset and, for
that reason, the selected approach was to build a single model
which is the first step for both Option A and Option B.

Thus, this study, starting at the cell level and under specific
charging conditions, establishes a foundational understanding
necessary for real-life SoH estimations at pack level. Future
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Fig. 13.  State of Function for each cell over FEC (a) Capacity SoF, (b) IR SoF, and (c) total SoF.

work includes the crucial step of implementing the presented
methodology on board an EV, where real data collected from
the BMS will replace laboratory-based use cases. To do so,
several challenges will be addressed, including the analysis of
different chemistries, the onboard estimation of the IR, cell to
cell ageing variability in the battery pack, the impact of cell
balancing and thermal management, and the influence of varying
ambient temperatures and C-rates during charging. In addition,
forecasting techniques will be explored for the SoF based on
the operation stress factors in order to estimate the EoL. without
assuming the fixed threshold, resulting in an individualized and
improved estimation.

V. CONCLUSION

This paper presents a SoH estimation algorithm based on
partial charges, leveraging a realistic dataset obtained from
laboratory testing that reflects real-world driving habits. The
algorithm breaks away from the limitations of existing methods
by employing only BMS measurements and avoiding charge
segmentation, recognizing the inherent differences between the
curves of segmented full charges and partial charges. The pre-
sented approach, at cell-level, represents the first step to con-
struct pack-level SoH estimations that bridge the gap between
laboratory conditions and actual EV operation.

The study has compared two estimation voltage ranges: one
close to the second IC peak (P2), shown to be most correlated
to the SoH, and another close to the third (P3). In addition, two
common Machine Learning models have been compared (SVR
vs NN).

The NN is very sensitive to the number of datapoints, and
produced less precise estimations for P2 than the SVR, achieving
aRMSE of 0.00668 compared to 0.00463. However, since for P3
more observations are available, the NN outperformed the rest
of the models with an average RMSE of 0.00356. The P3 NN
model is further enhanced by averaging over a window of FECs,
resulting in smoother predictions and a lower RMSE of 0.00330.

Along with the SoH, this study has also estimated the battery
functionality through an improved definition of the SoF. The SoF
is composed of two parts, one related to the capacity loss and
another to the power loss. Depending on the ageing trends and
driving requirements, for each cell either capacity or power con-
straints have shown to mark the cell functionality, showcasing
the need to include both aspects in the SoF definition.

Results show how, even if the SoH is similar, the SoF highly
depends on the usage and type of the battery. This highlights the
importance of analysing battery functionality along with the SoH
which allows for a more complete understanding of the require-
ments of each application. In this way, the EoL. methodologies
are improved by analysing individual requirements instead of
assuming the universal SoH threshold of 70-80%.
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